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ABSTRACT

A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services

authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must

be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely

discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive

clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds

(crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling,

capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the

Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results

to formulate an algorithm that attempts to compute a collective speed advisory, effectively piecewise linear with

finitely many vertices, and has computational cost polynomial in the number of aircraft. This work is a first step

toward optimization and models refined with more realistic detail.

1 Introduction

Management of air traffic which is confined to a network of nominal routes requires that each aircraft be scheduled to at

least a few crucial waypoints and arrive at each waypoint as near as possible to the scheduled time. This requirement gives

rise to an entire class of scheduling problems, which vary by airspace configuration and various flight restrictions, such as

speed- or altitude ranges, aircraft type, and weather. Since the airspace is often modeled as a directed graph, and a schedule

as a chart that estimates for each aircraft a time of arrival at each of the finitely many waypoints, models of centralized

scheduling of arrivals are frequently also sought in this, discrete, setting [1–7].

In such a model, aircraft are scheduled only at specific points (the vertices of the graph), with no time stamps maintained

or imputed of the aircraft’s position or speed away from such a point. One weakness of such inherently discrete models is

their principal inability to assure, without adding artificial constraints, pairwise separation between the aircraft continuously

in time, as is operationally required [8]. Another weakness, specific to the models that lead to a mixed-integer program

(MIP) [9], is the difficulty of finding an algorithm that performs sufficiently better than the NP-hard worst case of a general

mixed-integer linear program (MILP) [10], although a number of the algorithms developed for solving a MILP modeling

air traffic have been shown to perform with a running time polynomial in the number of aircraft (see, for example, [5, 11]).

However, while sufficient constraints can be imposed in a discrete model to assure separation at all times, the authors are

unaware of published discrete models that assure such separation and show computational performance suitable for aircraft

traffic in a terminal airspace.

∗Corresponding author. Email: alexander.v.sadovsky@nasa.gov



In this paper, we approach the scheduling of air traffic as a time-continuous problem. The hybrid control system (HCS)

framework proposed in [12] is used for modeling air traffic motion continuously in time in a broad class of airspace regions

represented as directed multigraphs. A schedule sought in this framework is, thus, a speed advisory, i.e. a continuous time

parameterization of each aircraft’s motion along a pre-determined path. The pairwise separation requirements are imposed

also in continuous time.

This framework has two main merits. First, it is capable of capturing realistically the following aspects of Air Traffic

Management (ATM): separation requirements for every pair of aircraft at every instant in time, speed restrictions, off-nominal

routes, and uncertainty in the actual times of an aircraft’s arrival at a waypoint. Second, it rests on the apparatus of HCS,

which is relatively well-understood theoretically [13–19] and furnished with general numerical methods (see, e.g., [20]).

While no optimization is pursued in this paper, and only feasible trajectories are sought for a given HCS, the framework can

serve as a setting for problems in optimal control [12].

The contribution of this paper is an algorithm for the class of Fully Routed Nominal Problems (section 6.1) in ATM,

where the goal is to guide a given finite set of aircraft, each along its pre-determined path, out of the route network in a

separation-compliant way. The algorithm, formulated in section 6.5, constructs, or reports failure to construct, a feasible

(i.e., compliant with the separation and speed range constraints) speed advisory that guides all the aircraft as required. The

computational cost is shown to be bounded by a low-degree polynomial in the number of aircraft.

2 Background

The inherently discrete models mentioned in section 1 have historic origins. Planning of air transportation, from the

time it came into mass use and to the time of this writing, has in practice been based on two doctrines, i), that scheduling

and separation assurance are two separate tasks and, ii), that a schedule need not synthesize for each aircraft a 4-D aircraft

trajectory (i.e., a time-parameterized curve in 3-D space), but only specify an appropriate set of waypoints and the times at

which they should be reached by the aircraft. (Current air transportation operations rely on Air Traffic Control (ATC) to devise

and issue clearance instructions to each aircraft and to modify the schedule when necessary in order to maintain aircraft

separation.) While automated trajectory synthesis has received some attention from researchers (see [21] and references

within) and is finding its way into air traffic operations (see, e.g., [22,23]), doctrine i) remains a dominant practice: currently

such synthesis does not meet, simultaneously, a given schedule and the time-continuous pairwise separation requirement.

As these conservative tendencies have persisted, increases in traffic demand have hampered ATC’s mission–to promote

“safe, orderly, and expeditious flow of traffic” [8]–in all aspects except safety. To address these newly arising difficulties

of ATC, researchers have sought to minimize various performance indices. Examples of such indices are makespan [2, 5],

fuel burn [24, 25], average or total delay [3, 24], excess separation [25], and deviation from preferred time of arrivals and

departures [1]. With this broadened focus, researchers have approached various types of air traffic scheduling problems in

terminal airspace using such frameworks as dynamic network flows, constraint-based scheduling, and scheduling combined

with separation considerations; a detailed survey, references, and discussion of this past research can be found in [26].

Further work on, and wider use of, automated generation of 4-D trajectories, as envisioned in the future [27], will raise

the question of how the responsibility for scheduling and for separation should be divided between the automation system

and the human controller. Having 4-D trajectory generation handled by the automation, and separation assurance by the

controller, would leave the controller with the full weight of separation responsibility while considerably restricting their

freedom in the choice of aircraft maneuvers. Such a practice is likely to limit the benefits associated with the use of 4-D

trajectories and to be unacceptable to Air Traffic Controllers. This consideration has led us to consider an investigation,

undertaken herein, of algorithms for 4-D trajectory generation that aim, as a Controller does today, to maintain separation

along the entire continuous trajectory for each aircraft.

3 An HCS model of an airspace

For the operational purposes of ATM, an airspace is regarded as a region with a set of marked points, called waypoints.

Some pairs of waypoints are connected by route segments. (For example, a portion of the airspace surrounding the Los

Angeles International Airport is shown in Fig. 1.) The same pair of points may be connected by more than one segment. In

practice, a route segment directly connecting a pair of waypoints is rectilinear, but this assumption will made here only in

section 6. This setting is naturally modeled by a directed multigraph [28]: the waypoints are the vertices, while the route

segments are the edges. A sequence of route segments with every consecutive pair adjacent is called a route and is none

other than the graph-theoretic path [28].

Although the application central to this paper is in Air Traffic Management, the following construct is, in principle,

suitable for any finite set of moving agents whose movement is confined to a route network. Assume one is given the

following data:

1. A directed multigraph G = (V,E), each vertex v ∈ V being a point in a Euclidean space E of dimension 2 or 3. If



Fig. 1. A portion of the LAX terminal airspace for arriving traffic. The thin arrows indicate the traffic directions.

e ∈ E is an edge from v1 ∈ V to v2 ∈ V , then the nominal route segment from waypoint v1 to waypoint v2 is a curve

in E, connecting v1 to v2. All such curves will henceforth be assumed rectifiable [29, section 4.6-9] and capable of a

parameterization which is continuous and piecewise continuously differentiable. A cusp in the curve can be traversed

with the assumption (made throughout this paper) that inertia is neglected, and approximately smoothed if inertia is

included. The outdegree and indegree of a vertex are allowed arbitrary values. To emphasize the aerospace context, the

multigraph G = (V,E) will be called a route network.

2. A finite set A = {1, . . . ,A}. of moving agents α ∈ A in G. If agent α is moving along edge e, the agent’s position is

specified by the arc length coordinate yα
e along a path containing e; the choice of arc length coordinates below will be

clarified as the model is developed, and will always be chosen to increase along the direction of the edge.

3. For each agent α ∈ A, a specification of the agent’s initial position, which is a point in G specified, for example, by an

edge in G and a fractional distance along that edge.

4. The inertia-free dynamical law [13] (henceforth the dot denotes differentiation with respect to physical time t) ẋα
e = sα

e ,
where the sα

e ’s are the corresponding speeds, describing the motion of those agents α that have not yet exited the system.

In what follows, and with the details provided below, the coordinates xα
e will play the role of state variables; the speeds

sα
e , of the control variables.

5. State constraints: the separation requirement for each pair of agents. This requirement is described mathematically, in

terms of the coordinates xα, in section 4. A state in which at least one pair of agents violates the separation requirement

will be called a conflicting state.

6. Control constraints: bounds on the speeds sα
e .

One choice of a hybrid control system (HCS) [13] fit for modeling coordinated multi-agent motion in a route network

G was introduced in [12]. In this HCS, one defines each discrete mode (in [13], location) as a mapping µ : A → E , which

specifies for each agent α the edge µ(α) currently occupied by that agent. Examples of three discrete modes on a 6-edge

route network with 3 moving agents are shown in Fig. 2. Denoting the arc length parameterization of edge µ(α) by xα
µ , the

dynamical law corresponding to discrete mode µ is given by the system ẋα
µ = sα

µ , α ∈ A, of differential control equations.

Suppose each xα
µ ranges from 0 to the length l(µ(α)) of edge µ(α). The set Xµ of all continuous states xµ = (xα

µ )α∈A =
(

x1
µ,x

2
µ, . . . ,x

A
µ

)

in discrete mode µ is then obtained by taking the A-dimensional parallelotope given by the Cartesian product

∏α[0, l(µ(α))] and removing from it all states that violate the separation constraint for at least one pair of agents (conflicting

states). (The set Xµ is an example of a roadmap coordination space, defined in [30, section 1.2].) For example, Fig. 3A

shows the Xµ1
for discrete mode µ1 from Fig. 2A; the conflicting states are not shown in Fig. 3.

One must then specify, for each pair of states xµ ∈ Xµ, xµ′ ∈ Xµ′ , whether it is possible for the system to go from



(A) (B) (C)

Fig. 2. Examples of three discrete modes with edge set E = {e1,e2, . . . ,e6} and moving agent set A = {1,2,3} (A = 3). The agents

are shown as numbered gray squares. The discrete modes shown are: (A) µ1 : µ1(1) = e1, µ1(2) = e1, µ1(3) = e4; (B) µ2 : µ2(1) =
e1, µ2(2) = e2, µ2(3) = e4; (C) µ3 : µ3(1) = e1, µ3(2) = e3, µ3(3) = e4.

(A) (B) (C) (D)

Fig. 3. (A-C) The continuous state spaces Xµ1
,Xµ2

,Xµ3
corresponding to discrete modes µ1,µ2,µ3 from Fig. 2. Among the discrete modes

the system may enter from µ1 are µ2 and µ3, accordingly as agent 2 enters e2 or e3. Conflicting states not shown. (D) A gluing of Xµ1
to

Xµ2
and to Xµ3

(see Fig. 3). Glued, all three state spaces share a face, but no two have any other points in common. Conflicting states not

shown.

one to the other, thus switching from one discrete mode to another, instantly. The set, denoted Sµ,µ′ , of all such state pairs

(xµ,xµ′) for a given pair of discrete modes µ,µ′ is called a switching set [13]. For this HCS, the switching sets are completely

determined by the following condition: (xµ,xµ′) ∈ Sµ,µ′ if and only if there is at least one agent, α, that in discrete mode µ

occupies a vertex v ∈ V with coordinate xα
µ = l(µ(α)), and in discrete mode µ′ occupies that same vertex with coordinate

xα
µ′ = 0. Thus, as the system switches from µ to µ′, agent α exits edge µ(α) and enters edge µ′(α). Geometrically, the

switching sets are described by a topological gluing [31] (similar to that used in [17, section 3]) between the corresponding

continuous state spaces Xµ and Xµ′ : the right endpoint of [0, l(µ(α))] is identified with the left endpoint of [0, l(µ′(α))]. If

the transition from µ to µ′ involves a change of edge for more than one agent, then each of these agents effects a gluing.

Thus, the face xα
µ(α) = l(µ(α)) of Xµ is to be glued to the face xα

µ′(α) = 0 of Xµ′ for each discrete mode µ′ that allows a direct

transition from µ. (For example, in Fig. 3(A-C), the “top” (in the sense of the Figure) face of Xµ1
is glued to the bottom

face of Xµ2
and of Xµ3

; see Fig. 3D.) The state space obtained by carrying out all such gluings, and denoted X , is called

the global continuous state space. Denoting the gluing operation by the non-standard symbol
glue
∪ , one has X =

glue
∪ µ Xµ.

Since the set of the conflicting states in each Xµ is closed [29], as it will be defined below using sharp inequalities, two states

xµ,xµ′ identified as a result of the above gluing are either both conflicting or both separation-compliant. It follows from the

above that every global continuous state space is a chain of dimension A on RA [32, section 35E] with the conflicting states

removed, but generally fails to be a differentiable manifold [32].

The only discrete control variable appearing in this HCS would thus be the one indicating, for an agent reaching a vertex

of outdegree ≥ 2, which edge the agent is to take (or whether the agent should exit the system) when leaving that vertex.

4 The geometry of a minimal separation requirement

In some transportation types, including aircraft and trains, every pair of moving agents must be be separated by a distance

no smaller than a pre-determined minimal separation. Such requirements can be asymmetric and anisotropic; for a detailed

discussion, see [12, section II]. Here we will characterize states that violate the separation requirement using conservative

approximations, addressing only the following asymmetry: if two moving agents are in-trail (i.e., one is directly following

the other along a route segment which is not necessarily in a horizontal plane), then the minimal separation can depend on

the weight class of the leading and trailing agent. To capture this potential asymmetry, for each pair α1,α2 of agents with

the first one leading, we introduce the minimal separation rα1,α2
. If the asymmetry takes place, it can be written

rα1,α2
6= rα2,α1

(1)



(A) (B)

Fig. 4. Agents 1,2 on their respective rectilinear edges e1,e2, which share a common vertex, taken as the origin 0 in R2. The orientation of

the edges is not specified. (A) The unit vectors a1,a2 are collinear with the respective edges, but their directions do not necessary agree with

the edges’ orientations. (B) With suitably chosen scalars coefficients c1,c2, the vectors c1a1 and c2a2 are the respective position vectors of

the two agents.

(A) (B)

Fig. 5. (A) An example of two elliptical sectors in the c1c2-plane corresponding to conflicting states. (B) An example of two stripes in the

c1c2-plane corresponding to conflicting states of two agents on the same edge.

We now calculate the set of all conflicting states in a discrete mode µ of an HCS described above; recall that these are the

states where at least two agents violate the separation requirement. The scenario shown in Fig. 4A has two agents on two

different rectilinear edges, which need not lie in a horizontal plane, with a common vertex and no specified orientation. (If

the edges are curvilinear with low curvature near a common vertex or intersection, these portions can be approximated by

linear segments; otherwise, the analysis becomes considerably more complicated.)

Remark 4.1. Since edge orientation is not specified, Fig. 4 describes 4 cases: both agents are moving toward the common

vertex, both moving away from the common vertex, and two more cases in which one agent moves toward, and the other

away from, the common vertex.

We will use the Euclidean inner product [29] 〈·, ·〉 and the corresponding norm [29] || · ||) in the 2-D space containing

the two edges. Pick the common vertex as the origin and the unit vectors a1,a2 as the basis vectors that, regardless of the

edge orientations, point from the origin toward the respective agents. With suitable scalars c1,c2, the vectors c1a1 and c2a2

are the agents’ respective position edges. The squared distance between the two agents, denoted by D2, is

D2 = ||c1a1 − c2a2||2 = (c1)
2 +(c2)

2 − 2c1c2〈a1,a2〉

Equating D2 to the squared minimal separation, say, r2
1,2, we obtain the equation D2 = r2

1,2 of an ellipse in the c1c2-plane. The

corresponding set of conflicting sets is described by the elliptical sector obtained by intersecting the open octant c2 > c1 > 0

with the ellipse-bound region D2 < r2
1,2 (respectively, D < r2

2,1) when agent 1 (respectively, agent 2) is the one closer to the

origin. The role of the angle θ between the edges e1,e2 in both sectors is the equality 〈a1,a2〉= cos(θ). An example of two

such sectors is shown in Fig. 5A. The asymmetry of the gray-shaded region about the dashed diagonal is the asymmetry (1).

In each of the four cases listed in Remark 4.1, the respective continuous state coordinates x1
µ,x

2
µ of agents 1,2 in discrete

mode µ map to the coefficients c1,c2, as follows:

1. If both agents are moving toward the common vertex, then xα
µ = l(eα)− cα for α = 1,2.

2. If both agents are moving away the common vertex, then xα
µ = cα for α = 1,2.

3. If agent 1 is approaching, and agent 2 going away from, the common vertex, then x1
µ = l(e1)− c1,x

2
µ = c2.

4. If agent 2 is approaching, and agent 1 going away from, the common vertex, then x1
µ = c1,x

2
µ = l(e2)− c2.

If θ ≥ 90◦, then in the last two cases µ allows only one in-trail sequence, so the minimal separations used for the two sectors

in Fig. 5A are equal. If the two agents 1,2 are on the same edge, then the set in the c1c2-plane of the conflicting states appears

as in Fig. 5B and is, in accordance with (1), asymmetric about the dashed diagonal. The mapping from the continuous state

coordinates x1
µ,x

2
µ to the coefficients c1,c2 is constructed analogously to the above four cases.
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(B) (C)

Fig. 6. An example of two agents whose paths overlap. The black star shows the beginning of the overlap in (A) and the corresponding

state (both agents being at that point) in (B); the white star, the end of the overlap in (A) and the corresponding state (both agents being

at that point) in (B). The system, shown in (A), has 7 discrete modes with both agents in the transportation network. Each mode’s set of

separation-violating states, shown in (B) as a connected [31] gray region, is “glued” to some of the others. The result of the gluing is the

connected region shown in (C).

The above calculation is illustrated, for an example of two moving agents, in Fig. 6. Each discrete mode’s set of

conflicting states is shown as a connected [31] gray region. For dimension A above 2, one must compute for each pair of

agents the set of states violating the separation requirements. Each such set is a cylinder, or union of cylinders, with the base

shaped as shown in Fig. 6C, in the total state space ∪µXµ. We note that the set of all separation-violating states in ∪µXµ is

cylindrical in the sense of [33, Definition 2.2], the latter definition a key requirement for the applicability of a number of

theoretical results of [33].

5 An alternative: path-based transportation HCS

The HCS model formulated in section 3 is sufficiently general to address problems in which an assignment of flight

routes to aircraft (“routing”) is not provided, but is to be carried out as part of solving the problem; see, e.g., Ref. [34] and

references therein. The focus of this paper, however, is a narrower subclass of such problems. This subclass is defined in

section 6.1 as the Fully Routed Nominal Arrival problem. In a Fully Routed Nominal Arrival problem, one of the underlying

assumptions is (as the name suggests) that the routes to be flown by the aircraft are given.

To approach solving Fully Routed Nominal Arrival problems, it seems more convenient to operate, not with the indi-

vidual edges of the graph G, as is done in section 3, but with entire flight paths in G. The content of this section, thus, is

the latter, path-oriented view of the HCS model of section 3. The formulation of section 3 was included with the following

two expository goals, unattainable (in the authors’ opinion) by presenting only the path-oriented formulation: to illustrate

clearly (i) the geometry of the separation loss region shown in Fig. 6C as arising from gluing together the regions shown in

Fig. 6B, and (ii) the complexity of routing, which would amount to searching for suitable continuous paths in a complicated

topological object, obtained by topological gluings such as that shown notionally in Fig. 3.

Assume the data 1)-6), listed in section 3, are given.

1. For each agent α ∈ A , let eINIT ;α denote the edge occupied initially by agent α. (Two or more agents can occupy the

same edge.)

2. Let P
(

eINIT ;α
)

be the set of all paths in the multigraph that begin with the edge eINIT ;α and end with an edge that

contains an acceptable destination for α. Denote the length of a path p ∈ P
(

eINIT ;α
)

by l(p).
3. Define each discrete mode as a mapping that assigns each agent α to a path in P

(

eINIT ;α
)

. In more detail, ν is a mapping

from the set A of moving agents to the union ∪αP
(

eINIT ;α
)

such that ν(α) ∈ P
(

eINIT ;α
)

for each α ∈ A .
4. In each ν, have the arc length coordinate yα

ν evolve according to the dynamical law

ẏα
ν = sα

ν , α ∈ A , (2)

where sα
ν is the control variable corresponding to the agent’s speed of motion along the path.

5. For each agent α and each discrete mode µ, specify the speed constraint

Sα;min
µ ≤ sα ≤ Sα;max

µ , (3)

where [Sα;min
µ ,Sα;max

µ ] is the speed range allowed for agent α in discrete mode µ.

Definition 5.1. The HCS defined in this section will be called a path-based transportation HCS.

In a path-based transportation HCS, every discrete mode ν corresponds to a possible routing of the agents in A , and



every execution occurs in only one discrete mode. It follows that the discrete controls in a path-based transportation HCS

are, effectively, identified with the discrete modes, and, in a Fully Routed Nominal Arrival problem, play but a trivial role.

6 A feasible trajectory algorithm for the Fully Routed Nominal Arrival Problem

6.1 Problem definition and geometric properties

In this section, we describe and analyze theoretically a subclass of the HCS defined above, the analysis being a foun-

dation for the algorithm in section 6.5. This subclass represents a most commonly modeled scenario of air traffic, which is

arriving in merging and, possibly, diverging flows, with no multiple routing options: each arriving aircraft follows without

deviation a prescribed path in the route network. Consequently, the resulting path-based transportation HCS (definition 5.1)

has only one discrete mode. Henceforth, the moving agents are aircraft. The subscript ν will be dropped for brevity.

Remark 6.1. The assumption that each aircraft is assigned a route may not always hold. In cases when such assignment

(known in Air Traffic Operations as routing) is not given, but is sought as part of the problem, the corresponding HCS has

multiple discrete modes. The theory and algorithm developed in this section can then be used for each of those discrete

modes, and the result computed in one of the modes selected later as final. See [12] for an analysis of computational costs

and possibility of parallel computation of routing.

The problem consists in computing a control strategy s(t) = (sα(t))α∈A that will, in accordance with dynamical law

(2), take each aircraft to the end of its prescribed path. To ATM operations, such a control strategy would serve as a speed

advisory. This problem will be called the Fully Routed Nominal Arrival problem. It consists in finding feasible trajectories.

No optimization is pursued.

Section 6.2 gives a list of assumptions, made to simplify the computations. As is shown below, these assumptions

allow a solution by an algorithm that is non-iterative and proven to halt in polynomial time. Because of the urgency that

can accompany ATM decisions, this bound on computation time is a highly desired feature of every solution candidate to

be deployed as an operational tool in the field, especially for automated tools responsible for both separation assurance and

scheduling.

6.2 Simplifying assumptions and their implications

Assumption 6.1. All control strategies considered before section 7 will be assumed executable with certainty, i.e. with-

out execution error that may be caused by wind, transportation performance, or human factors. In particular, under this

assumption, the aircraft is able to follow its prescribed route exactly, without deviation.

An approach to including execution uncertainty in the model is discussed in section 7.

Assumption 6.2. All aircraft have the same cruising speed range, [Smin,Smax].

Assumption 6.3. All aircraft pairs have the same required minimal separation distance, henceforth denoted r.

Assumption 6.4. During the execution of the algorithm described in section 6.5, below, no new aircraft enter the system.

6.3 Geometry of the global continuous state space

Since the system is fully routed, each aircraft α is assigned a uniquely determined path, whose length will henceforth

be denoted Mα, α = 1, . . . ,A. Accordingly, the global state space Y for the problem can be obtained by removing from the

parallelotope ∏α∈A [0,M
α] all the conflicting states. We choose the coordinate system, for the whole of Y , so that the state

variable yα indicates the arc length coordinate of aircraft α on its path and ranges from 0 to Mα. Unless said otherwise, all

state variables are regarded as coordinates referred to the standard basis e1 = (1,0, . . . ,0,0), . . . ,eA = (0,0, . . . ,0,1).

The target set, the distal boundary, and protrusions

The vertex M = (M1, . . . ,MA) of Y will be called the distal vertex of Y . The faces of Y containing the distal vertex will

be called distal faces. Distal faces of dimension 1 will be called distal edges. Since the distal edges correspond, one-to-one,

to states in which all but one aircraft have exited the airspace, we define the target set of the fully routed nominal problem as

the union of all distal edges. Fig. 7A illustrates the distal edges for 3 aircraft.

The union of all the (A− 1)-dimensional faces adjacent to the distal vertex will be called the distal boundary. An

illustration of the distal boundary for the case of 3 aircraft is given in Fig. 7B.



(A) (B)

Fig. 7. The case of A = 3 aircraft: (A) The distal edges and the target set, and (B) an illustration of the distal boundary.
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DICPs

Fig. 8. The shaded regions are the orthogonal projections of the half-spaces (A) Hα1,α2;−1, (B) Hα1,α2;+1, and (C) Fα1,α2 onto the

yα1yα2 -plane. Their intersection is the polygonal approximation, shown in Fig. 8D, of the conflict zone for α1,α2. (D) An approximation of

a pairwise conflict zone (Fig. 6C) by a polygonal region equal to the intersection of three half-planes. (E) The geometry of the safe wedges

(shaded) and DICPs.

6.4 Polygonally approximated conflict zones: geometric properties used in the algorithm

Each pairwise conflict zone will be approximated here by a polygon which is the intersection of three half-planes. This

approximation achieves considerable computational advantage, but likely incurs a cost if an optimization were pursued: by

enlarging the conflict zone, one restricts the class of considered candidate solutions. This loss would be most severe if at least

two of the agents’ path were to cross (the relevant operational concepts are same courses, crossing courses, and opposite

courses; see [8, section 1-2-2].) In the framework of the above model, such a crossing can be viewed as a short overlap

(compare to Fig. 6). To analyze the geometry of the conflicting state sets that result from this approximation in the global

state space X , it will be convenient to introduce the technical terms of protrusion, safe wedge, innermost conflict edge, and

distal innermost conflict-free point.

In the A-dimensional Euclidean space RA, define the unit vector d = 1√
A
(1,1, . . . ,1).

Let Hα1,α2;−1 and Hα1,α2;+1 denote, respectively, the half-spaces consisting of all states y = (y1, . . . ,yA) satisfying

yα1 − yα2 > −rα1,α2 and yα1 − yα2 < rα1,α2 , where rα1,α2 is the sum of the required minimal separation distance between

aircraft α1 and α2 and a “buffer,” which is a value sufficiently large to make sure that the obtained polygonal approximation

contains all of the exact pairwise conflict zone depicted in Fig. 6C.

Define the half-space Fα1,α2 to consist of all states y satisfying 〈y−M,−d〉 < f α1,α2 , where f α1,α2 is the orthogonal

distance from M to the bounding hyperplane of Fα1,α2 (Fig. 8). The pairwise conflict zone for the aircraft pair α1,α2 is,

then, approximated by the open [29] polyhedral region

Zα1,α2 = Hα1,α2;−1 ∩Hα1,α2;+1 ∩Fα1,α2 , (4)

depicted in Fig. 8D. The distance f α1,α2 will be called the protrusion of the conflict zone (4).

Safe wedges, innermost conflict edges, and DICPs

The intersection Hα1,α2;−1 ∩Hα1,α2;+1 is a conflicting slab of the form |yα1 − yα2 | < r. By “removing” from the A-

dimensional Euclidean space RA all the conflicting slabs (i.e., the slabs corresponding to all pairs of aircraft), one obtains a

pairwise disjoint collection of A! polyhedral regions, called safe wedges. The intersection of a safe wedge with the global

continuous state space is a conflict-free region and has a 1-dimensional face (a line) parallel to d. This line will be called an

innermost conflict-free edge. The intersection of this edge with a distal face of dimension (A− 1) is a point called a distal

innermost conflict-free point (DICP). Safety wedges and DICPs for the case of A = 2 aircraft are illustrated in Fig. 8E.

Consider “the positive A-dimensional quadrant” RA
≥0 = {(y1,y2, . . . ,yA) : yα ≥ 0 for all α} of the A-dimensional Eu-



clidean space RA. For each permutation σ of the indices 1, . . . ,A, the set of all y = (y1,y2, . . . ,yA) such that

0 ≤ yσ(1) < yσ(2) < .. . < yσ(A) (5)

determines a subset Yσ of the “quadrant” RA
≥0.

Definition 6.1. The subset Yσ (in fact, the interior of a polyhedral angle) will henceforth be called the basic polyhedral

angle corresponding to the permutation σ.

Lemma 6.1. If the permutation σ is such that the safe wedge W consists of all y = (y1,y2, . . . ,yA) with

yσ(α) ≤ r+ yσ(α+1) for α = 1,2, . . . ,A− 1, (6)

then W is contained in Yσ.

Proof. Condition (5) follows from (6).

Theorem 6.1. If all the required minimal distances for in-trail separation have the same value, r, then the coordinate A-

tuple of every DICP is the sum of M and a permutation of 0,−r,−2r, . . . ,−(A−1)r, and, conversely, every such permutation

gives a DICP.

Proof. These A-tuples are exactly those at which all constraints (6) are active.

The cone of attainability, feasible trajectories, and feasible solutions

The flow of the traffic consisting of A aircraft α = 1, . . . ,A can be seen as a trajectory (y1(t),y2(t), . . . ,yA(t)) of the

inertia-free dynamical law (2).

Remark 6.2. Throughout this paper, the term collective trajectory (or, simply, trajectory) will mean a time-parameterized

curve y(t) = (y1(t),y2(t), . . . ,yA(t)) in the global continuous state space X that satisfies (2) for some choice of a control

strategy s(t) = (s1(t), . . . ,sA(t)). This usage of the term trajectory differs from that commonly seen in Air Traffic Management.

Recall assumption 6.2. A segment y0 y in X is said to be attainable if all aircraft pairs (α1,α2) satisfy

Smin

Smax
(yα2 − y

α2
0 )≤ yα1 − y

α1
0 ≤ Smax

Smin
(yα2 − y

α2
0 ) (7)

A ray emanating from y0 is said to be attainable if for every point y on the ray the segment y0y is attainable. The union of all

attainable rays emanating from y0 is a polyhedral cone, called the cone of attainability at y0 and denoted C(y0). This cone is

a pointed cone with vertex y0. A collective trajectory y(t) with initial state y(0) = y0 is said to be attainable if it is piecewise

differentiable and, at every point y of differentiability, the corresponding tangent vector lies in the cone of attainability at y.

A conflict-free attainable trajectory is said to be feasible. A 2-aircraft example is shown notionally in Fig. 9; a 3-aircraft

example, in Fig. 10.

Definition 6.2. A feasible trajectory whose final state is in the target set is called a feasible solution.

The following lemma characterizes all the collective states from which it is safe to have all aircraft fly at the same speed.

Lemma 6.2. If y0 is a DICP, then there exists a feasible solution with initial state y0. Consequently, a feasible trajectory

with the final state a DICP can be extended to a feasible solution.

Let | · |∞ denote the max norm, defined for a vector ξ = (ξ1,ξ2, . . . ,ξA) in RA by |ξ|∞ = maxα |ξα|.

Proof. The collective trajectory y(t) = y0 + tSmax 1
|d|∞ d, with the α-th component excluded once aircraft α exits the global

continuous state space, is conflict-free since y0 lies in a safe wedge and since ẏ is co-directional with d.
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0= (y , y )1 2

0 0
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Fig. 9. An example with two aircraft. The conflict zone is as in Fig. 8D. (A) A collective state trajectory y(t), with initial state y(0) = y0. (B)

The cone of attainability C(y0) (shown in the lighter shade) at y0. (C) The cone is positioned so that there are no feasible solutions.

y0

0

Fig. 10. An example with A = 3 aircraft (compare with Fig. 7). There are (A
2 ) = 3 conflict zones. The orthogonal projection of zone Zα1,α2

onto the yα1yα1 -coordinate plane (onto the appropriate face of the parallelotope) has the form shown, as a shaded region, in Fig. 9A.

The geometry of FCFS: the closest DICP to y corresponds to the safe wedge containing y

The key result of this section, theorem 6.2, tells how to find (in time O(A2)) a DICP that requires “minimal position

shifting” to be performed on the current collective state.

Lemma 6.3. If a = (a1,a2) and b = (b1,b2) are vectors in the first octant of the 2-dimensional Euclidean space R2 with

Cartesian coordinates y1,y2, i.e. satisfy 0 < a1 < a2 and 0 < b1 < b2, then

a1b1 + a2b2 > a1b2 + a2b1 (8)

Proof. Both a and b lie in the positive quadrant of the plane and below the diagonal y1 = y2. Therefore, the angle between

a and b is smaller than that between a and b′ = (b2,b1) (the latter point being above the diagonal). Since all angles are

between 0 and π/2, one has 〈a,b〉> 〈a,b′〉, which is inequality (8).

Lemma 6.4. Suppose a = (a1, . . . ,aA) and b = (b1, . . . ,bA) are vectors, with all standard components distinct, in the A-

dimensional Euclidean space RA such that 0< a1 < a2 < .. . < aA and 0< bα for α = 1, . . . ,A. For each permutation σ
of {1,2, . . . ,A}, let σb =(bσ(1),bσ(2), . . . ,bσ(A)). Then, of the products 〈a,σb〉 corresponding to all the different permutations

σ, a largest one is delivered by that permutation σ∗ for which bσ∗(1) < bσ∗(2) < .. . < bσ∗(A).



y0

d

p

Fig. 11. An example illustrating lemma 6.5. There are A = 3 aircraft, and the initial state y0 lies in a safe wedge. By going from y0 in the

direction d, one reaches the distal boundary (in state p) without running into a conflict zone.

Proof. Applying BubbleSort [35] to the numerical sequence

b1, . . . ,bA, (9)

one obtains a sequence σ1,σ2, . . . ,σJ−1,σJ = σ∗ of permutations of {1,2, . . . ,A}, every two consecutive ones differing by a

transposition that puts two elements of (9) in increasing order. By lemma 6.3, 〈a,σ j−1b〉< 〈a,σ jb〉 for j = 2,3, . . . ,J. Thus,

the largest of the products 〈a,σ jb〉 is given by σJ = σ∗.

The following helps locate a DICP closest to a given y.

Theorem 6.2. If y = (y1, . . . ,yA) and a DICP p = (p1, . . . , pA) lie in the same basic polyhedral angle, then p is a closest

(in the sense of Euclidean distance) DICP to y.

Proof. For this proof, change coordinates so that M is now the origin, and d points along the positive diagonal. If q were a

DICP closer to y than p is, then the permutation σ such that q = σp would satisfy 〈σp,y〉> 〈p,y〉, contradicting lemma 6.4.

Existence and nonexistence of feasible solutions

The following lemma and its proof are based on the intuition that starting in a state y0 in a safe wedge and going in the

direction d, one will reach the distal boundary without running into any conflict zones; see Fig. 12.

Lemma 6.5. (A sufficient condition for the existence of a feasible solution.) If y0 = (y1
0, . . . ,y

A
0 ) is in a safe wedge, then

there exists a feasible solution with initial state y0.

Proof. Consider the trajectory y(t) = y0 + ts 1
|d|∞ d, with t increasing to the value T for which the state p = y(T ) lies on

the distal boundary. By construction, the trajectory is feasible, and y(T ) lies in a safe wedge. The state yT , taken to be the

initial state for a new, (A− 1)-dimensional, problem, lies in a safe wedge of the new ambient (A− 1)-dimensional space.

(For, in the state yT , at least one aircraft, say α-th, has exited the airspace, so all the pairwise conflict zones involving α are

removed.) Consequently, the lemma holds by induction on A.

Theorem 6.3. (A sufficient condition for the absence of feasible solutions.) If a pairwise conflict zone (4) (not necessarily

with a largest protrusion) is such that C(y0)∩∂Fα1,α2 is contained entirely in the conflicting slab Hα1,α2;−1∩Hα1,α2;+1 (Fig.

9C), then there is no feasible solution with initial state y0.

Proof. In a cone C(y0) so positioned, every attainable collective trajectory reaches a conflicting state before reaching the

target set.



Table 1. The output format of an advisory segment.

a/c 1 speed a/c 2 speed . . . a/c A speed TTF

6.5 A polynomial-time speed control algorithm for computing a feasible solution or reporting that none was found

Given: An initial state y0 =
(

y1, . . . ,yA
)

, the global continuous state space (completely determined by (M− y0)), and

the pairwise conflict zones (4).

Steps and explanatory remarks Computational cost in

the big-O notation [35]

1. Find all conflicting slabs that contain y0. (A
2 ) = O

(

A2
)

2. If y0 lies in no conflicting slab, i.e. lies in a safe wedge, exit the algorithm, returning

the speed advisory constructed in lemma 6.5.

O(A)

3. Test whether the collective state y0 is in any of the pairwise conflict zones (4). If it is,

go to step 8.

O
(

A2
)

(For steps 4, 5, 7, refer to Fig. 12).

4. Find a DICP p closest to y0. By theorem 6.2, the

computational cost of

this step is O(A log2 A)

5. Compute the state y1 = p + αd that lies on the boundary of C(y0). O(A)

Remark 6.3. By construction, the state y1 lies in a safe wedge, hence the segment y1p

is a feasible trajectory (lemma 6.5; see also Fig. 12). If segment y0y1 is feasible, then

the trajectory y0y1p is feasible and, by lemma 6.2, extends to a feasible solution.

6. If segment y0y1 is feasible, exit the algorithm, returning the speed advisory for the

trajectory described in remark 6.3. Computations are required to check the feasibility

of y0 y1.

O
(

A2
)

7. (In this step, let Γ denote the hyperplane orthogonal to d and passing through the ori-

gin. Orthogonal projection onto Γ will also be denoted by Γ. Refer to Fig. 12 for an

illustration of a case with A = 3.)

Segment y0 y1 has been found infeasible. Use a fixed number of iterations of the Bi-

section Method to look for the parameter β that determines the point q = β Γp such

that the point y1;∗, defined as the intersection between the line through q parallel to d

and the boundary of C(y0), yields a feasible segment y0 y1;∗. If this segment is found,

return a speed advisory for the trajectory y0 y1;∗p (analogously to step 6). Otherwise,

go to step 8.

O(A)

8. Exit the algorithm with the message, “Cannot produce a conflict-free speed advisory by

speed control only.”

O(1)

6.6 Sample numerical solutions

If a feasible speed advisory is found by the above algorithm successfully, it is output as one or more rectilinear segments,

each called an advisory segment and conforming to the format shown in table 1. Here TTF stands for the time to fly (with

that speed) and indicates the time duration in which the advisory segment is to be traversed. However, in the numerical



y0

d

p

y1

Γ+ y0 (the translate of Γ by y0)(A)

(B)

y0

y1 p Γp

Γ

M = 0

βΓp

(B)

Fig. 12. An example, with A = 3 aircraft, illustrating the algorithm. In steps 4, 5, one finds a DICP p closest to y0 and proceeds from p

along the direction of −d until reaching a state y1 on the boundary of C(y0). The segment y0y1 may or may not be feasible. The latter

case is illustrated in (A) (the infeasible part of y0y1 is shown dashed) and is handled by step 7, which is illustrated in (B). If y0y1 had turned

out feasible, the piecewise linear trajectory y0y1p would have constituted a first portion of a solution, and this would have been detected and

handled in step 6.

results presented below (table 2), instead of showing all the individual speeds, the following abbreviated format will be used:

min. of the A speeds max. of the A speeds TTF (10)

The above algorithm was applied to a number of arriving traffic scenarios in the portion of the LAX airspace shown in

Fig. 1. Although all the paths in this airspace portions converge to one runway, such convergence is not a requirement: the

algorithm is applicable to all situations where the aircraft follow pre-determined paths. The solutions found for two of the

scenarios, each with two advisory segments, are summarized in Table 2. The initial states are conflict-free. One of the two



Table 2. Each of the tables gives a 2-segment speed advisory and TTF for an arriving traffic scenarios. In columns 4-6 of each table, each

line fits format (10).

#

a/c

y0 advis.

seg.

min.

speed (kts)

max.

speed (kts)

seg.

TTF (hr)

23 Fig.

13

1

2

211.84

250.00

250.00

250.00

0.56

0.41

#

a/c

y0 advis.

seg.

min.

speed (kts)

max.

speed (kts)

seg.

TTF (hr)

24 not

shown

1

2

199.11

250.00

250.00

250.00

0.59

0.44

Fig. 13. The initial state of a traffic scenario for 23 aircraft. To capture airspace adequately, an aspect ratio different from 1 is used. The thin

arrows indicate the directions of the traffic.

scenarios is depicted in Fig. 13, with circles of radius r centered at the aircraft.

7 Discussion

The above HCS framework addresses simultaneously the following issues in Air Traffic Management and adjacent

fields: scheduling, speed advisory generation, conflicts (avoidance, detection, and recovery), computational efficiency, and

algorithm correctness. The theory and algorithm given above are mainly a proof of concept, intended to demonstrate how

HCS can be used to obtain provably correct solutions efficiently. The following are some directions for further research.

Control equations with inertia: A model more realistic than the dynamical law (2) should include inertia, thus making

the agents’s acceleration (and not speed) the quantity directly controllable.

Allowing new aircraft to enter the airspace during the computation: A reasonable direction is a search for geometric

insight into those entrances for which the original, A-dimensional, problem has a feasible solution but the newly obtained

one does not. The problem above, together with the Scheduled Routing Problem formulated in [12], suggest that such

insight would be valuable not only in air traffic management and in airspace design, but also in the general field of multi-

agent coordination. In published literature, entrance of new aircraft into the system has been considered in the context of

the dynamic Aircraft Scheduling (Landing) Problem (see [26]), which, however, does not consider separation except at the

runway.

Conflict recovery: Recovering from a conflicting state yc in the above model is equivalent to finding–or establishing

the absence of–a shortest (or otherwise optimal) attainable trajectory from yc to a nearest safe wedge. Theorem 6.2 is



instrumental here, as a nearest safe wedge is with a nearest DICP, and the latter is computable in time polynomial in A.

Path control (in ATM operational terminology, Vectors): In operational ATM practice, an aircraft is often allowed, and

even instructed, to deviate from a given route. Such deviations are known in Air Traffic operations as path control. This

deformation of the given route results in a deformation of the global continuous state space and of the pairwise conflict zones.

Insight into the relation between the two deformations can be instrumental in extending the model to include path control.

Modeling uncertainty of control execution: Control of aircraft is affected by such sources of uncertainty as human

factors, aircraft performance, and weather. In the context of the above HCS, such uncertainty generally leads to stochastic

dynamical law [36, chapter 14]. Among the most common sources of random perturbation to an aircraft’s execution of

control is wind. In the special case when each aircraft is cleared for a procedure that prescribes a specific route consisting

of rectilinear segments, connected by fixed-radius turns (e.g., RF-leg types [37]), the aircraft’s navigation system will keep

the aircraft on the route even in the presence of wind. Therefore, the wind affects only those components of the aircraft’s

speed and acceleration tangential to the route. This suggests a stochastic dynamical law, for the Fully Routed Problem, that

includes inertia (i.e., the control variable is the acceleration), governs the arc length coordinate yα and the arc length speed

sα as stochastic processes serving as the state variables, and has the form

dyα = sα dt, dsα = aα dt + aw dt + dWα, α ∈ A

where aw is the (possibly time-dependent) mean of the tangential component of the acceleration due to wind, and W is a

Wiener process that characterizes the fluctuations of the acceleration due to wind about the mean.
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